ANIMATED FIGURES: Moving with the times

Christmas decorations have gone high-tech, and with the increasing adoption of animated figures into displays in the home, retail and corporate environments this market seems poised for impressive growth.

By Bridget White
ANIMATION STANDARDS

The designs and features of animated figures have dramatically improved over just the past few years. One of the main causes for these improvements is tied to advancements in the worlds of consumer electronics and computer microprocessors. Some of the best technological advancements in animated figures include small, inexpensive data chips for voice recording; more realistic movements; and higher quality materials.

Arrow cautions that realism is one of the most important factors in selecting animated figures. According to Arrow, realistic movements help viewers personally identify with the characters and enable them to imagine the characters are real.

“We always pay special attention to the way the figure actually moves,” explains Arrow. “You don’t want it to look too robotic. It needs to sort of move freely. So for instance, if it was waving or something like that, it would be moving its hand backwards and forwards in a real humane way, as opposed to being very robotic so that you think a mechanism is moving the hand backwards and forwards. Also, you would expect the figure to look lifelike and characteristic of whatever it was representing.”

The success of some of the best new animated figures, however, has very little to do with technology; instead, it is the result of pure artistic vision. Throughout the world, the creations of Pennsylvania-based Mary Daub have set a new standard for animated figures and are widely recognized as some of the best, most realistic figures available.

According to Daub, her process is a time-consuming transformation of latex and paint into one-of-a-kind figures that look almost real. The first step is to mold liquid latex over a real person to get an individual look for that particular figure. Once the latex is dried and set, it is stretched over a fiberglass body mold and hand-painted with layer after layer of paint to achieve the realistic look of color variations in actual skin. As a final touch, the figures are programmed and dressed to specification. Daub’s creations are usually pre-ordered and designed to fit detailed specifications from the client. A hands-on process such as this is not designed for mass production (figures can often take as long as one month from start to finish) but for quality, and the finished product speaks for itself.

At the other end of the spectrum are small, low-cost, high-output pieces created under the same manufacturing model as any other product. Golden Bridge, based in China, creates a line of small, basic animated products for shipment all over the world. Ping Kong, international relations manager at Golden Bridge, said that his company’s products continue to gain in popularity, not because they are unique but because they are inexpensive to produce, creating a low price point. Once the mold is created and the workers are trained, they can produce an infinite number of each item.

“We create millions of each shape every year,” said Kong. “Dancing Santas, wreathes that sing when you get close enough, both are very big for us. We make a low-cost toy that everyone can afford, and we make lots of them that are just the same. Big, expensive figures are not better than ours; we have high standards for quality and make a good product. Manufacturing here is just cheaper and because we make so many of each item each one costs less.”

WHAT COMES NEXT?

With the category already advanced to its current level, it was hard to imagine what could be the next big thing for animated figures, but Arrow believes that there is a lot of exploration and development yet to be done.

“As technology has advanced,” explains Arrow, “you can get figures that can be programmed so they can do a number of poses or movements without

ANIMATION STANDARDS

The designs and features of animated figures have dramatically improved over just the past few years. One of the main causes for these improvements is tied to advancements in the worlds of consumer electronics and computer microprocessors. Some of the best technological advancements in animated figures include small, inexpensive data chips for voice recording; more realistic movements; and higher quality materials.

Arrow cautions that realism is one of the most important factors in selecting animated figures. According to Arrow, realistic movements help viewers personally identify with the characters and enable them to imagine the characters are real.

“We always pay special attention to the way the figure actually moves,” explains Arrow. “You don’t want it to look too robotic. It needs to sort of move freely. So for instance, if it was waving or something like that, it would be moving its hand backwards and forwards in a real humane way, as opposed to being very robotic so that you think a mechanism is moving the hand backwards and forwards. Also, you would expect the figure to look lifelike and characteristic of whatever it was representing.”

The success of some of the best new animated figures, however, has very little to do with technology; instead, it is the result of pure artistic vision. Throughout the world, the creations of Pennsylvania-based Mary Daub have set a new standard for animated figures and are widely recognized as some of the best, most realistic figures available.

According to Daub, her process is a time-consuming transformation of latex and paint into one-of-a-kind figures that look almost real. The first step is to mold liquid latex over a real person to get an individual look for that particular figure. Once the latex is dried and set, it is stretched over a fiberglass body mold and hand-painted with layer after layer of paint to achieve the realistic look of color variations in actual skin. As a final touch, the figures are programmed and dressed to specification. Daub’s creations are usually pre-ordered and designed to fit detailed specifications from the client. A hands-on process such as this is not designed for mass production (figures can often take as long as one month from start to finish) but for quality, and the finished product speaks for itself.

At the other end of the spectrum are small, low-cost, high-output pieces created under the same manufacturing model as any other product. Golden Bridge, based in China, creates a line of small, basic animated products for shipment all over the world. Ping Kong, international relations manager at Golden Bridge, said that his company’s products continue to gain in popularity, not because they are unique but because they are inexpensive to produce, creating a low price point. Once the mold is created and the workers are trained, they can produce an infinite number of each item.

“We create millions of each shape every year,” said Kong. “Dancing Santas, wreathes that sing when you get close enough, both are very big for us. We make a low-cost toy that everyone can afford, and we make lots of them that are just the same. Big, expensive figures are not better than ours; we have high standards for quality and make a good product. Manufacturing here is just cheaper and because we make so many of each item each one costs less.”

WHAT COMES NEXT?

With the category already advanced to its current level, it was hard to imagine what could be the next big thing for animated figures, but Arrow believes that there is a lot of exploration and development yet to be done. "As technology has advanced," explains Arrow, "you can get figures that can be programmed so they can do a number of poses or movements without"
anyone having to reset them. They actually work on fancy computer systems that allow you to program a whole series of movements at once. Also, you could have the figure so that it looked like a static figure, but it would have a sensor in it so that if you got closer to it it would start to move or speak or such. I think there is going to be a lot more development done in this area.”

The area Arrow speaks about has seen tremendous advancements over the last few years. Microprocessor chips that control a figure’s movement can allow for a seemingly endless assortment of movements and movement combinations. Motion sensors allow a figure to remain static until a viewer is close enough to enjoy the show, at which time figures become fully animated until the program is complete. And most recently, realistic voice chips have allowed for “conversations” to be programmed between figures.

Adler sees the addition of a voice component as the most significant of the recent improvements in animated figures. “The real advancement,” says Adler, “has been the advent of small, affordable chips that go inside of the figure. Right now, you can record about 30 seconds of material on the chip — just about anything you want it to say. You can even record several things on the chip and have them rotate in a loop so that the figure says different things each time it is activated.”

All of this praise about the current technology is not to say, though, that we should expect this category to become inactive any time soon. Advancements in the electronics and computer industries will open new doors for advancements with animated figures.

One of the new technologies in the works at Kurt S. Adler Corporation is an easier activation mechanism for small animated figures. Currently, these figures are activated either by motion sensors, which is not always desirable, or by squeezing a pressure point. Adler reports that his company is in the process of developing a line of touch-activated figures. So instead of having to squeeze a certain point, often a difficult task for small children, the figure would be activated whenever its surface is touched.

Cipolatti Design’s main customers are shopping malls, which are some of the biggest users of animated Christmas figures, and Cipolatti explains that her customers come back every year asking what her company can do the next year that will be better or more than the previous year. She argues that good, old-fashioned competition is the biggest driver of her decorating business.

“There are many, many shopping malls all over the world now,” says Cipolatti, “and they compete a lot between them to see who can have the best decorations. They think that if they have the better decorations or a better show than their competitor down the street then the customers will come to their shopping mall to see it or maybe that the customers will stay longer at their shopping mall because the decorations are so beautiful.”

“What I see for us in the future,” adds Cipolatti, “is each year we are improving so much it is sometimes a very big job to do better next year. The way we are able to do it is to work on many different projects and to search all over the world to find the best materials, best technology, best products to do better than last year.”

Certainly at some point in the future, you would expect this category to stop advancing as quickly as it is now, but for the near term, manufacturers, retailers and designers are all still in the market for the next innovation, technology or design that will make them the leader in animated Christmas figures.